Reduction theory and the Lagrange–Routh equations
نویسندگان
چکیده
Reduction theory for mechanical systems with symmetry has its roots in the classical works in mechanics of Euler, Jacobi, Lagrange, Hamilton, Routh, Poincaré, and others. The modern vision of mechanics includes, besides the traditional mechanics of particles and rigid bodies, field theories such as electromagnetism, fluid mechanics, plasma physics, solid mechanics as well as quantum mechanics, and relativistic theories, including gravity. Symmetries in these theories vary from obvious translational and rotational symmetries to less obvious particle relabeling symmetries in fluids and plasmas, to subtle symmetries underlying integrable systems. Reduction theory concerns the removal of symmetries and their associated conservation laws. Variational principles, along with symplectic and Poisson geometry, provide fundamental tools for this endeavor. Reduction theory has been extremely useful in a wide variety of areas, from a deeper understanding of many physical theories, including new variational and Poisson structures, to stability theory, integrable systems, as well as geometric phases. This paper surveys progress in selected topics in reduction theory, especially those of the last few decades as well as presenting new results on non-Abelian Routh reduction. We develop the geometry of the associated Lagrange–Routh equations in some detail. The paper puts the new results in the general context of reduction theory and discusses some future directions. © 2000 American Institute of Physics. @S0022-2488~00!02006-5#
منابع مشابه
Reduction of Hamilton's Variational Principle
This paper builds on the initial work of Marsden and Scheurle on nonabelian Routh reduction. The main objective of the present paper is to carry out the reduction of variational principles in further detail. In particular, we obtain reduced variational principles which are the symplectic analogue of the well known reduced variational principles for the Euler{Poincar e equations and the Lagrange...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملRouth’s procedure for non-Abelian symmetry groups
We extend Routh’s reduction procedure to an arbitrary Lagrangian system (that is, one whose Lagrangian is not necessarily the difference of kinetic and potential energies) with a symmetry group which is not necessarily Abelian. To do so we analyse the restriction of the Euler-Lagrange field to a level set of momentum in velocity phase space. We present a new method of analysis based on the use ...
متن کاملGeometric Mechanics, Lagrangian Reduction, and Nonholonomic Systems
This paper surveys selected recent progress in geometric mechanics, focussing on Lagrangian reduction and gives some new applications to nonholonomic systems, that is, mechanical systems with constraints typified by rolling without slipping. Reduction theory for mechanical systems with symmetry has its roots in the classical works in mechanics of Euler, Jacobi, Lagrange, Hamilton, Routh, Poinca...
متن کاملThe Reduced Euler-Lagrange Equations
Marsden and Scheurle [1993] studied Lagrangian reduction in the context of momentum map constraints—here meaning the reduction of the standard Euler-Lagrange system restricted to a level set of a momentum map. This provides a Lagrangian parallel to the reduction of symplectic manifolds. The present paper studies the Lagrangian parallel of Poisson reduction for Hamiltonian systems. For the reduc...
متن کامل